志·卷三十二
作者:脫脫、阿魯圖等
◎律歷十二
○紀元歷
崇寧《紀元歷》
演紀上元上章執徐之歲,距元符三年庚辰,歲積二千八百六十一萬三千四百六十算;至崇寧五年丙戌,歲積二千八百六十一萬三千四百六十六算。
步氣朔第一
日法:七千二百九十。
期實:二百六十六萬二千六百二十六。
朔實:二十一萬五千二百七十八。
歲周:三百六十五日、餘一千七百七十六。
氣策:一十五、餘一千五百九十二太。
朔策:二十九、餘三千八百六十八。
望策:一十四、餘五千五百七十九。
弦策:七、餘二千七百八十九半。
中盈分:三千一百八十五半。
朔虛分:三千四百二十二。
沒限:五千六百九十七少。
旬周:四十三萬七千四百。
紀法:六十。
求天正冬至:置上元距所求積年,以期實乘之,為天正冬至氣積分;滿旬周去之,不滿,如日法而一為大余,不盡為小余。其大余命己卯,算外,即所求年天正冬至日辰及余。
求次氣:置天正冬至大、小余,以氣策加之,(四分之一為少,之二為半,之三為太。如滿秒母,收從小余,小余滿日法從大余,大余盈紀法乃去之。)去命如前,即次氣日辰及余。
求天正經朔:置天正冬至氣積分,以朔實去之,不盡,為天正閏余;用減氣積分,余為天正十一月經朔加時積分。滿旬周去之,不滿,如日法而一為大余,不盡為小余。其大余命己卯,算外,即所求年天正十一月經朔日辰及余。
求弦望及次朔經日:置天正經朔大、小余,以弦策累加之,去命如前,即各得弦、望及次朔經日辰及余。
求沒日:置有沒常氣小余,(凡常氣小余在沒限已上者,為有沒之氣。)六十乘之,用減四十四萬三千七百七十一,余滿六千三百七十一而一為日,不滿為余。命日起其氣初日辰,算外,即為氣內沒日辰。
求滅日:置有滅經朔小余,(凡經朔小余不滿朔虛分者,為有滅之朔。)三十乘之,滿朔虛分而一為日,不滿為余。命日起其月經朔日辰,算外,即為月內滅日辰。
步發斂
候策:五、餘五百三十、秒五十五。
卦策:六、餘六百三十七、秒六。
土王策:三、餘三百一十八、秒三十三。
歲閏:七萬九千二百九十。
月閏:六千六百七半。
閏限:二十萬八千六百七十半。
辰法:一千二百一十五。
半辰法:六百七半。
刻法:七百二十九。
秒法:六十。
求七十二候:各置中節大、小余命之,為初候;以候策加之為次候;又加之為末候。各命己卯,算外,即得所求日辰。
求六十四卦:各置中氣大、小余命之,為公卦用事日;以卦策加之,得辟卦用事日;又加之,得諸侯內卦用事日;以土王策加之,得十有二節之初諸侯外卦用事日;又加之,得大夫卦用事日;復以卦策加之,得卿卦用事日。各命己卯,算外,即得所求日辰。
求五行用事:各因四立之節大、小余命之,即春木、夏火、秋金、冬水首用事日。以土王策減四季中氣大、小余,即其季土始用事之日。各命己卯,算外,即得所求日辰。
七十二候及卦目(與前歷同。)
求中氣去經朔:置天正閏余,以月閏累加之,滿日法為閏日,不滿為余,即其月中氣去經朔日算。因求卦候者,各以卦、候策依次累加減之,(中氣前減,中氣後加。)各得其月卦、候去經朔日算。
求發斂加時:置所求小余,倍之,如辰法而一為辰數,不滿,五因之,如刻法而一為刻,不盡為分。命辰數起子正,算外,即各得加時所在辰、刻及分。(如半辰數,即命起子初。)
步日躔
周天分:二億一千三百一萬八千一十七。
歲差:七千九百三十七。
周天度:三百六十五、約分二十五、秒七十二。
象限:九十一、約分三十一、秒九。
乘法:一百一十九。
除法:一千八百一十一。
秒法:一百。
求每日盈縮分先後數:置所求盈縮分,以乘法乘之,如除法而一,為其氣中平率;與後氣中平率相減,為合差;半合差,加減其氣中平率,為初、末泛率。(至後加為初、減為末,分後減為初、加為末。)又以乘法乘合差,如除法而一,為日差;半日差,加減初、末泛率,為初、末定率。(至後減初加末,分後加初減末。)以日差累加減其氣初定率,為每日盈縮分;(至後減,分後加。)各以每日盈縮分加減氣下先後數。(冬至後,積盈為先,在縮減之;夏至後,積縮為後,在盈減之。其分、至前一氣,無後氣相減,皆因前氣合差為其氣合差。余依前術,求朏朒仿此。)
求經朔弦望入氣:置天正閏日及余,如氣策以下者,以減氣策,為入大雪氣;以上者去之,余以減氣策,為入小雪氣:即天正十一月經朔入氣日及余。(求弦、望及後朔入氣,以弦策累加之,滿氣策去之,即各得弦、望及次朔入氣日及余。)
求經朔弦望入氣朏朒定數:各以所入氣小余乘其日損益率,如日法而一,所得,以損益其日下朏朒積,各為定數。
赤道宿度
斗:二十五 牛:七少 女:十一少 虛:九少(秒七十二)
危:十五半 室:十七 壁:八太。
北方七宿九十四度(秒七十二)。
奎:十六半 婁:十二 胃:十五 昴:十一少
畢:十七少。 觜:半。 參:十半。
西方七宿八十三度。
井:三十三少 鬼:二半 柳:十三太。 星:六太
張:十七少 翼:十八太 軫:十七
南方七宿一百九度少。
角:十二 亢:九少 氐:十六 房:五太
心:六少 尾:十九少 箕:十半
東方七宿七十九度。
按諸歷赤道宿次,就立全度,頗失真數。今依宋朝渾儀校測距度,分定太、半、少,用為常數,校之天道,最為密近。如考唐,用唐所測;考古,用古所測:即各得當時宿度。
求冬至赤道日度:以歲差乘所求積年,滿周天分去之,不滿,覆減周天分,余如五千八百三十二而一為分,不盡,退除為秒。其分,滿百為度,命起赤道虛宿七度外去之,至不滿宿,即所求年天正冬至加時日躔赤道宿度及分秒。
求春分、夏至、秋分赤道日度:置天正冬至加時赤道日度,累加象限,滿赤道宿次去之,即各得春分、夏至、秋分加時日在宿度及分秒。
求四正後赤道宿積度:置四正赤道宿全度,以四正赤道日度及分減之,余為距後度;以赤道宿度累加之,各得四正後赤道宿積度及分。
求赤道宿積度入初末限:視四正後赤道宿積度及分,在四十五度六十五分、秒五十四半已下為入初限;已上,用減象限,余為入末限。
求二十八宿黃道度:以四正後赤道宿入初、末限度及分,減一百一度,余以初、末限度及分乘之,進位,滿百為分,分滿百為度,至後以減、分後以加赤道宿積度,為其宿黃道積度;以前宿黃道積度減之,(其四正之宿,先加象限,然後以前宿減之。)為其宿黃道度分。(其分就近約為太、半、少。)
黃道宿度
斗:二十三 牛:七 女:十一 虛:九少(秒七十二)
危:十六。 室:十八。 壁:九半。
北方七宿九十三度太(秒七十二)。
奎:十八 婁:十二太 胃:十五半 昴:十一
畢:十六半 觜;半 參:九太
西方七宿八十四度。
井:三十半 鬼:二半 柳:十三少 星:六太
張:十七太 翼:二十 軫:十八半
南方七宿一百九度。
角:十二太 亢:九太 氐:十六少 房:五太
心:六 尾:十八少 箕:九半
東方七宿七十八度少。
前黃道宿度,依今歷歲差所在算定。如上考往古,下驗將來,當據歲差,每移一度,依術推變當時宿度,然後可步七曜,知其所在。(如徑求七曜所在,置所在積度,以前黃道宿積度減之,為所在黃道宿度及分。)
求天正冬至加時黃道日度:以冬至加時赤道日度及分秒,減一百一度,余以冬至加時赤道日度及分秒乘之,進位,滿百為分,分滿百為度,命曰黃赤道差;用減冬至赤道日度及分秒,即所求年天正冬至加時黃道日度及分秒。
求二十四氣加時黃道日度:置所求年冬至日躔黃赤道差,以次年黃赤道差減之,余以所求氣數乘之,二十四而一,所得以加其氣中積及約分,又以其氣初日先後數先加後減之,用加冬至加時黃道日度,依宿次命之,即各得其氣加時黃道日躔宿度及分秒。(如其年冬至加時赤道宿度空,分秒在歲差已下者,即加前宿全度。然求黃赤道差,余依術算。)
求二十四氣晨前夜半黃道日度:置日法,以其氣小余減之,余副置之;以其氣初日盈縮分乘之,如萬約之,所得,盈加縮減其副,滿日法為度,不滿,退除為分秒,以加其氣加時黃道日度,即各得其氣一日晨前夜半黃道日度及分秒;每日加一度,以百約每日盈縮分為分秒,盈加縮減之,滿黃道宿次去之,即每日晨前夜半黃道日躔宿度及分秒。(其二十四氣初日晨前夜半黃道日度,系屬前氣,自前氣攤算,即各得所求。)
求每日午中黃道日度:置一萬分,以所入氣日盈縮分盈加縮減而半之,滿百為分,不滿為秒,以加其日晨前夜半黃道日度,即其日午中日躔黃道宿度及分。
求夏至加時黃道日度:置天正冬至加時黃道日度及分秒,以二至限及分秒加之,滿黃道宿次去之,不滿,為夏至加時黃道日度及分秒。
求每日午中黃道積度:以二至加時黃道日度距至所求日午中黃道日度,為入二至後黃道積度及分。
求每日午中黃道入初末限:視二至後黃道積度,在四十三度一十二分、秒八十七以下為初限;以上,用減象限,余為入末限。其積度滿象限去之,為二分後黃道積度,在四十八度一十八分、秒二十二以下為初限;以上,用減象限,余為入末限。
求每日午中赤道日度:以所求日午中黃道積度,入至後初限、分後末限度及分秒,進三位,加二十萬二千五十少,開平方除之,所得,減去四百四十九半,余在初限者,直以二至赤道日度加而命之;在末限者,以減象限,余以二分赤道日度加而命之:即每日午中赤道日度。以所求日午中黃道積度,入至後末限、分後初限度及分秒,進三位,用減三十萬三千五十少,開平方除之,所得,以減五百五十半,余在初限者,直以二分赤道日度加而命之;在末限者,以減象限,余以二至赤道日度加而命之:即每日午中赤道日度。
求太陽入宮日時刻及分:各置入宮宿度及分秒,以其日晨前夜半日度減之,余以二十四乘,為時實;以其日太陽行度及分秒為法實,如法而一,為半時數;不滿,進二位,為刻實;以二十四乘,前法除之為刻,不滿,退除為分。其半時命起子正,算外,即得太陽入宮初正時、刻及分。(其逐刻日、時及分,舊曆均其日數,從其簡略,未盡其詳。今但依入宮正術求之,即允協天道。)
步晷漏
二至限:一百八十二、分六十二、秒一十八。
象限:九十一、分二十一、秒九。
一象度:九十一、分二十一、秒四十三。
冬至後初限夏至後末限:六十二日、分二十。
夏至後初限冬至後末限:一百二十日、分四十二。
已上分秒母各同一百。
冬至岳台晷影常數:一丈二尺八寸三分。
夏至岳台晷影常數:一尺五寸六分。
昏明分:一百八十二少。
昏明刻:二分三百六十四半。
辰刻:八分二百四十三。
半辰刻:四分一百二十一半。
刻法:七百二十九。
求午中入氣:置所求日大余及半法,以所入氣大、小余減之,為其日午中入氣日及余。
求午中中積:置其氣中積,以午中入氣日及余加之,(其餘以日法退除為分秒。)為所求日午中中積及分秒。
求午中入二至後初末限;置午中中積及分,為入冬至後;滿二至限去之,為入夏至後。其二至後,如在初限已下為入初限;已上,覆減二至限,余為入末限。
求岳台晷影午中定數:冬至後初限、夏至後末限,以百通日,內分,自相乘為實,置之;以七百二十五除之,所得,加一十萬六百一十七,併入限分,折半為法,實如法而一為分,不滿,退除為小分,其分滿十為寸,寸滿十為尺,用減冬至岳台晷影常數,即得所求午中晷影定數。夏至後初限、冬至後末限,以百通日,內分,自相乘,為實,乃置入限分,九因,再折,加一十九萬八千七十五為法,(其夏至前後,日如在半限以上者,減去半限,余置於上,列半限於下,以上減下,余以乘上,進二位,七十七除之,所得加法為定法,然後除之。)實如法而一為分,不滿,退除為小分,其分滿十為寸,寸滿十為尺,以加夏至岳台晷影常數,即得所求日午中晷影定數。
求每日日行積度:以午中入氣余乘其日盈縮分,日法而一,冬至後盈加縮減、夏至後縮加盈減先後數,以先加後減中積日及分秒,滿與不足,進退其日,為所求日行積度及分秒。
求每日赤道內外度:置所求日午中日行積度及分,如不滿二至限,在象限已下為冬至後度;象限已上,用減二至限,為夏至前度。如滿二至限去之,余在象限以下為夏至後度;象限以上,用減二至限,為冬至前度。並置之於上,列象限於下,以上減下,余以乘上,冬至前後五百一十七而一,夏至前後四百而一為度,不滿,退除為分,以加二至前後度,所得,用減象限,余置於上,列二至限於下,以上減下,余以乘上,(其度、分、秒皆以百通,然後乘之。)退一位,如三十四萬八千八百五十六而一為秒,滿百為分,分滿百為度,即所求日黃道去赤道內外度及分。(冬至前後為外,夏至前後為內。)
求每日午中太陽去極度;以每日午中黃道去赤道內、外度及分,內減外加一象度及分,為每日午中太陽去極度及分。
求每日日出入分晨昏分半晝分:置所求日黃道去赤道內外度及分,以三百六十三乘之,進一位,如二百三十九而一,所得,以加減一千八百二十二半,(赤道內以減,赤道外以加。)為所求日日出分;用減日法,為日入分。以昏明分減日出分,為晨分;加日入分,為昏分;以日出分減半法,為半晝分。
求每日晝夜刻日出入辰刻:置日出分,倍之,進一位,滿刻法為刻,不滿為分,即所求日夜刻;以減百刻,余為晝刻;半夜刻,滿辰刻為辰數;命子正,算外,即日出辰刻;(以半辰刻加之,即命起時初。)以晝刻加之,滿辰刻為辰數;命日出,算外,即日入辰刻及分。
求每更點差刻及逐更點辰刻:置夜刻,減去十五刻,五而一,為更差;又五而一,為點差。以昏明刻加日入辰刻,即初更辰刻;以更點差刻累加之,滿辰刻及分去之,各得更點所入辰刻及分。
求每日距中度及每更差度:置所求日黃道去赤道內、外度及分,以四千四百三十五乘之,如五千八百一十二而一為度,不滿,退除為分,以內加外減一百度七十二分、秒七為距中度。用減一百六十四度八十一分、秒五十七,餘四因,退一位,為每更差度。
求昏曉五更及攢點中星:置距中度,以其日午中赤道日度加而命之,即昏中星所格宿次,命為初更中星;以每更差度加而命之,即二更中星;以每更差度累加之,滿赤道宿度去之,即逐更及攢點中星;加三十六度六十二分、秒五十七,滿赤道宿度去之,即曉中星。
求九服晷景:各於所在測冬夏二至晷數,乃相減之,余為二至差數。如地在岳台南測夏至晷景在表南者,並冬夏二至晷數為二至差數。其所求日在冬至後初限、夏至後末限者,置岳台冬至晷景常數,以所求日岳台午中晷景定數減之,余以其處二至差數乘之,如岳台二至差數一丈一尺二寸七分而一,所得,以減其處冬至晷數,即其地其日中晷定數。所求日在夏至後初限、冬至後末限者,置所求日岳台午中晷景定數,以岳台夏至晷景常數減之,余以其處二至差數乘之,如岳台二至差數而一,所得,以加其處夏至晷數,即其地其日中晷定數。如其處夏至景在表南者,以所得之數減其處夏至晷數,余為其地其日中晷定數,亦在表南也。其所得之數多於其處夏至晷數,即減去夏至晷數,余為其地其日中晷定數,在表北也。
求九服所在晝夜漏刻:各於所在下水漏,以定其處冬夏二至夜刻,(但得一至可矣,不必須要冬夏二至。)乃與五十刻相減,余為至差刻。置所求日黃道去赤道內外度及分,以至差刻乘之,進一位,如二百三十九而一為刻,不盡,以刻法乘之,復八而一為分,內減外加五十刻,即所求日夜刻;減百刻,余為晝刻。(其日日出入辰刻及更點差刻、每更點辰刻,並依岳台術求之。)
步月離
轉周分:二十萬八百七十三、秒九百九十。
轉周日:二十七、餘四千四十三、秒九百九十。
朔差日:一、餘七千一百一十四、秒九千一十。
望策:一十四、餘五千五百七十九。
弦策:七、餘二千七百八十九半。
已上秒母一萬。
七日:(初數六千四百七十八,初約分八十九;末數八百一十二,末約分一十一。)
十四日:(初數五千六百六十六,初約分七十八;末數一千六百二十四,末約分二十二。)
二十一日:(初數四千八百五十四,初約分六十七;末數二千四百三十六,末約分三十三。)
二十八日:(初數四千四十三,初約分五十五。)
上弦:九十一度、分三十一、秒四十三。
望:一百八十二度、分六十二、秒八十六。
下弦:二百七十三度、分九十四、秒二十九。
月平行:十三度、分三十六、秒八十七太。
已上分、秒母皆同一百。
求天正十一月經朔入轉:置天正十一月經朔加時積分,以轉周分及秒去之,不盡,滿日法除之為日,不滿為余秒,命日,算外,即所求年天正十一月經朔加時入轉日及余秒。(若以朔差日及余秒加之,滿轉周日及余秒去之,即次朔加時入轉日。)
求弦望入轉:各因其月經朔加時入轉日及余秒,以弦策累加之,去命如前,即上弦、望及下弦經日加時入轉日及余秒。
求朔弦望入轉朏朒定數:置入轉余,以其日算外損益率乘之,如日法而一,所得,以損益其下朏朒積為定數。其四七日下余如初數已下者,初率乘之,初數而一,以損益朏朒為定數。如初數已上者,以初數減之,余乘末率,末數而一,用減初率,余加朏朒為定數。其十四日下余如初數已上者,初數減之,余乘末率,末數而一,為朏朒定數。
求朔弦望定日:各置經朔、弦、望小余,以入氣、入轉朏朒定數朏減朒加之,滿與不足,進退大余,命己卯,算外,各得定日日辰及余。定朔乾名與後朔乾名同者月大,不同者月小,其月內無中氣者為閏月。(凡注歷,觀定朔小余,秋分後在日法四分之三已上者,進一日;春分後定朔日出分差如春分之日者,三約之,用減四分之三;定朔小余及此數已上者,亦進一日;或當交虧初在日入已前者,其朔不進。弦、望定小余不滿日出分者,退一日;望若有食虧初在日出已前者,定望小余進滿日出分,亦進一日。又月行九道遲疾,有三大二小;日行盈縮累增損之,則有四大三小,理數然也。若俯循常儀,當察加時早晚,隨其所近而進退之,使不過三大二小。)
求定朔弦望加時日所在度:置定朔、弦、望約余,副之,以乘其日盈縮分,萬約之,所得,盈加縮減其副,滿百為分,分滿百為度,以加其日夜半日度,命之,各得其日加時日躔黃道宿次。
求平交日辰:置交終日及余秒,以其月經朔加時入交泛日及余秒減之,余為平交入其月經朔加時後日算及余秒,以加減其月經朔大、小余,其大余命己卯,算外,即平交日辰及余秒。(求次交者,以交終日及余秒加之,大余滿紀法去之,命如前,即次平交日辰及余秒。)
求平交入轉朏朒定數:置平交小余,加其日夜半入轉余,以乘其日損益率,日法而一,所得,以損益其下朏朒積為定數。
求正交日辰:置平交小余,以平交入轉朏朒定數朏減朒加之,滿與不足,進退日辰,即正交日辰及余秒;與定朔日辰相距,即所在月日。
求經朔加時中積:各以其月經朔加時入氣日及余,加其氣中積及余,其日命為度,其餘以日法退除為分秒,即其月經朔加時中積度及分秒。
求正交加時黃道月度:置平交入經朔加時後日算及約余秒,以日法通日,內余,進一位,如五千四百五十三而一為度,不滿,退除為分秒,以加其月經朔加時中積,然後以冬至加時黃道日度加而命之,即得其月正加時月離黃道宿度及分秒。如求次交者,以交終度及分秒加而命之,即得所求。
求黃道宿積度:置正交加時黃道宿全度,以正交加時月離黃道宿度及分秒減之,余為距後度及分秒,以黃道宿度累加之,即各得正交後黃道宿積度及分秒。
求黃道宿積度入初末限:各置黃道宿積度及分秒,滿交象度及分去之,在半交象已下為初限;已上者,以減交象度,余為入末限。(入交積度、交象度並在交會術中。)
求月行九道宿度:凡月行所交,冬入陰曆,夏入陽曆,月行青道。(冬至、夏至後,青道半交在春分之宿,當黃道東;立冬、立夏後,青道半交在立春之宿,當黃道東南:至所沖之宿亦如之。)冬入陽曆,夏入陰曆,月行白道。(冬至、夏至後,白道半交在秋分之宿,當黃道西;立冬、立夏後,白道半交在立秋之宿,當黃道西北:至所沖之宿亦如之。)春入陽曆,秋入陰曆,月行朱道。(春分、秋分後,朱道半交在夏至之宿,當黃道南;立春、立秋後,朱道半交在立夏之宿,當黃道西南:至所沖之宿亦如之。)春入陰曆,秋入陽曆,月行黑道。(春分、秋分後,黑道半交在冬至之宿,當黃道北;立春、立秋後,黑道半交在立冬之宿,當黃道東北:至所沖之宿亦如之。)四序離為八節,至陰陽之所交,皆與黃道相會,故月行有九道。各以所入初、末限度及分減一百一度,余以所入初、末限度及分乘之,半而退位為分,分滿百為度,命為月道與黃道泛差。凡日以赤道內為陰,外為陽;月以黃道內為陰、外為陽。故月行正交,入夏至後宿度內為同名,入冬至後宿度內為異名。其在同名者,置月行與黃道泛差,九因八約之,為定差。半交後、正交前以差減,正交後、半交前以差加。(此加減出入六度,正如黃、赤道相交同名之差。若較之漸異,則隨交所在,遷變不常。)仍以正交度距秋分度數乘定差,如象限而一,所得,為月道與赤道定差,前加者為減,減者為加。其在異名者,置月行與黃道泛差,七因八約之,為定差;半交後、正交前以差加,正交後、半交前以差減。(此加減出入六度,異如黃赤道相交異名之差,若較之漸同,則隨交所在,遷變不常。)仍以正交度距春分度數乘定差,如象限而一,所得,為月行與赤道定差,前加者為減,減者為加;皆加減黃道宿積度,為九道宿積度;以前宿九道積度減之,為其宿九道度及分。(其分就近約為太、半、少。論春、夏、秋、冬,以四時日所在宿度為正。)
求正交加時月離九道宿度:以正交加時黃道日度及分減一百一度,余以正交度及分乘之,半而退位為分,分滿百為度,命為月道與黃道泛差。其在同名者,置月行與黃道泛差,九因八約之,為定差,以加;仍以正交度距秋分度數乘定差,如象限而一,所得,為月道與赤道定差,以減。其在異名者,置月行與黃道泛差,七因八約之,為定差,以減;仍以正交度距春分度數乘定差,如象限而一,所得,為月道與赤道定差,以加。置正交加時黃道月度及分,以二差加減之,即正交加時月離九道宿度及分。
求定朔弦望加時月所在度:置定朔加時日躔黃道宿次,凡合朔加時,月行潛在日下,與太陽同度,是為加時月離宿次;各以弦、望度及分秒加其所當弦、望加時日躔黃道宿度,滿宿次去之,命如前,各得定朔、弦、望加時月所在黃道宿度及分秒。
求定朔弦望加時九道月度:各以定朔、弦、望加時月離黃道宿度及分秒,加前宿正交後黃道積度,為定朔、弦、望加時正交後黃道積度。如前求九道積度,以前宿九道積度減之,余為定朔、弦、望加時九道月離宿度及分秒。(其合朔加時若非正交,則日在黃道、月在九道。所入宿度雖多少不同,考其兩極,若應繩準,故云月行潛在日下,與太陽同度。)
求定朔午中入轉:以經朔小余與半法相減,余以加減經朔加時入轉,(經朔小余少,如半法加之;多,如半法減之。)為經朔午中入轉。若定朔大余有進退,亦加減轉日,否則因經為定,命日,算外,即得所求。(次月仿此求之。)
求每日午中入轉:因定朔午中入轉日及余秒,每日累加一日,滿轉周日及余秒去之,命如前,即得每日午中入轉日及余秒。
求晨昏月度:置其日晨分,乘其日算外轉定分,日法而一,為晨轉分;用減轉定分,余為昏轉分;又以朔、弦、望定小余乘轉定分,日法而一,為加時分;以減晨昏轉分,為前;不足,覆減之,余為後;乃前加後減加時月度,即晨、昏月所在宿度及分秒。
求朔弦望晨昏定程:各以其朔昏定月減上弦昏定月,余為朔後昏定程;以上弦昏定月減望昏定月,余為上弦後昏定程;以望晨定月減下弦晨定月,余為望後晨定程;以下弦晨定月減後朔晨定月,余為下弦後晨定程。
求每日轉定度:累計每程相距日轉定分,與晨昏定程相減,余以相距日數除之,為日差;(定程多為加,定程少為減。)以加減每日轉定分,為每日轉定度及分秒。
求每日晨昏月:因朔、弦、望晨昏月,加每日轉定度及分秒,滿宿次去之,為每日晨昏月。(凡注歷,目朔日注昏月,望後次日注晨月。)已前月度以究算術之精微,如求其速要,即依後術徑求。
求經朔加時平行月:各以其月經朔入氣日及余秒,(其餘以日法退除為分秒。)加其氣中積日及約分,命日為度,即為經朔加時平行月積度及分秒。
求所求日加時平行月:置所求日大余及加時小余,以其月經朔大、小余減之,余為入經朔加時後日數及余;以其日乘月平行度及分秒,列於上位,又以其餘乘月平行度及分秒,滿日法除之為度,不滿,退除為分秒,並上位,用加經朔加時平行月,滿周天度及分秒去之,即得所求日加時平行月積度及分秒。
求所求日加時入轉:以所求日加時入經朔加時後日數及余,加經朔加時入轉日及余秒,滿轉周日及余秒去之,命日,算外,即得所求。(其餘先以日法退除為分秒。)
求所求日加時定月:置所求日加時入轉分,以其日算外加減差乘之,百約為分,分滿百為度,加減其下遲疾度,為遲疾定度;乃以遲減疾加所求日加時平行月,為定月。各以天正冬至加時黃道日度加而命之,即得所求日加時月離黃道宿度及分秒。(其入轉若在四、七日者,如求朏朒術入之。)